کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1712988 | 1013211 | 2008 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Recurrent neural network for vehicle dead-reckoning
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
For vehicle integrated navigation systems, real-time estimating states of the dead reckoning (DR) unit is much more difficult than that of the other measuring sensors under indefinite noises and nonlinear characteristics. Compared with the well known, extended Kalman filter (EKF), a recurrent neural network is proposed for the solution, which not only improves the location precision and the adaptive ability of resisting disturbances, but also avoids calculating the analytic derivation and Jacobian matrices of the nonlinear system model. To test the performances of the recurrent neural network, these two methods are used to estimate the state of the vehicle's DR navigation system. Simulation results show that the recurrent neural network is superior to the EKF and is a more ideal filtering method for vehicle DR navigation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Systems Engineering and Electronics - Volume 19, Issue 2, April 2008, Pages 351-355
Journal: Journal of Systems Engineering and Electronics - Volume 19, Issue 2, April 2008, Pages 351-355
نویسندگان
Ma Haibo, Zhang Liguo, Chen Yangzhou,