کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1722005 1014707 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Exact analytical solutions for moving boundary problems of one-dimensional flow in semi-infinite porous media with consideration of threshold pressure gradient
ترجمه فارسی عنوان
راه حل های دقیق تحلیلی برای حرکت مشکلات مرزی جریان یک بعدی در رسانه های متخلخل نیمه ناپیوسته با توجه به گرادیان فشار آستانه
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی دریا (اقیانوس)
چکیده انگلیسی

By defining new dimensionless variables, nonlinear mathematical models for one-dimensional flow with unknown moving boundaries in semi-infinite porous media are modified to be solved analytically. The exact analytical solutions for both constant-rate and constant-pressure inner boundary constraint problems are obtained by applying the Green's function. Two transcendental equations for moving boundary problems are obtained and solved using the Newton-Raphson iteration. The exact analytical solutions are then compared with the approximate solutions. The Pascal's approximate formula in reference is fairly accurate for the moving boundary development under the constant-rate condition. But another Pascal's approximate formula given in reference is not very robust for constant-pressure condition problems during the early production period, and could lead to false results at the maximum moving boundary distance. Our results also show that, in presence of larger TPG, more pressure drop is required to maintain a constant-rate production. Under the constant-pressure producing condition, the flow rate may decline dramatically due to a large TPG. What's more, there exists a maximum distance for a given TPG, beyond which the porous media is not disturbed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hydrodynamics, Ser. B - Volume 27, Issue 4, August 2015, Pages 542-547