کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1722321 | 1014719 | 2014 | 11 صفحه PDF | دانلود رایگان |
The hydrodynamics of geophysical flows in oceanic shelves, estuaries, and rivers are often studied by solving shallow water equations under either hydrostatic or non-hydrostatic assumptions. Although the hydrostatic models are quite accurate and cost-efficient for many practical applications, there are situations when the fully hydrodynamic models are preferred despite a larger cost for computations. The present numerical model is implemented by the finite volume method (FVM) based on unstructured grids. The model can be efficiently switched between hydrostatic and non-hydrostatic modules. The case study shows that for waves pro-pagating along the bar a criterion with respect to the shallowness alone, the ratio between the depth and the wave length, is insufficient to warrant the performance of shallow flow equations with a hydrostatic approach and the nonlinearity in wave dynamics can be better accounted with a hydrodynamic approach. Besides the prediction of the flows over complex bathymetries, for instance, over asymmetrical dunes, by a hydrodynamic approach is shown to be superior in accuracy to the hydrostatic simulation.
Journal: Journal of Hydrodynamics, Ser. B - Volume 26, Issue 4, 1 September 2014, Pages 512-522