کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1722579 | 1014731 | 2011 | 6 صفحه PDF | دانلود رایگان |

A coupled one-dimensional (1-D) and two-dimensional (2-D) channel network mathematical model is proposed for flow calculations at nodes in a channel network system in this article. For the 1-D model, the finite difference method is used to discretize the Saint-Venant equations in all channels of a looped network. The Alternating Direction Implicit (ADI) method is adopted for the 2-D model at the nodes. In the coupled model, the 1-D model provides a good approximation with small computational effort, while the 2-D model is applied for complex topography to achieve a high accuracy. An Artificial Neural Network (ANN) method is used for the data exchange and the connectivity between the 1-D and 2-D models. The coupled model is applied to the Jingjiang-Dongting Lake region, to simulate the tremendous looped channel network system, and the results are compared with field data. The good agreement shows that the coupled hydraulic model is more effective than the conventional 1-D model.
Journal: Journal of Hydrodynamics, Ser. B - Volume 23, Issue 4, August 2011, Pages 521-526