کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1722970 | 1014750 | 2006 | 9 صفحه PDF | دانلود رایگان |

Based on the characteristics of sea ice drifting and ridging at meso-small scale, the Drucker-Prager (D-P) yield criteria was introduced into the Viscoelastic-Plastic (VEP) constitutive model for the study of sea ice dynamics. In this model, the Kelvin-Vogit viscoelastic model was adopted in the elastic stage, and the associated normal flow rule was used in the plastic stage. Using the VEP model, the sea ice ridging process was simulated in an idealized rectangular basin, and the simulation results show that the simulated ice ridge thickness is consistent with the analytical solution. Moreover, the VEP model with the D-P yield criteria was also applied for the sea ice simulation of Bohai Sea, and the ice thickness, concentration, velocity, and ice stress were obtained in 48 h. The simulated thickness distributions agree well with the satellite images. The singular problem in the Mohr-Coulomb (M-C) yield criteria was overcome by the D-P yield criteria, and the computational efficiency was also improved. In the numerical simulations described above, the smoothed particle hydrodynamics was applied.
Journal: Journal of Hydrodynamics, Ser. B - Volume 18, Issue 6, December 2006, Pages 714-722