کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1784043 1524114 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enhanced infrared transmittance properties in ultrafine MgAl2O4 nanoparticles synthesised by a single step combustion method, followed by hybrid microwave sintering
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک اتمی و مولکولی و اپتیک
پیش نمایش صفحه اول مقاله
Enhanced infrared transmittance properties in ultrafine MgAl2O4 nanoparticles synthesised by a single step combustion method, followed by hybrid microwave sintering
چکیده انگلیسی
Infrared transparent ceramics found to have potential applications as infrared windows and domes in strategic defence and space missions. Synthesis of ultrafine nanostructured MgAl2O4 ceramics by a modified single step auto-igniting combustion technique, followed by sintering of the sample by resistive and resistive-microwave hybrid heating to high density and their excellent infrared transmission characteristics are presented in this paper. Structural characterisations of MgAl2O4 nanoparticles reveal that the as prepared powder is phase pure, with average crystallite size ∼15 nm and possess a cubic structure. Optical band gap calculated using the Kubelka-Munk method is 5.75 eV. The thermal stability of the nanopowder at elevated temperatures has been studied using thermo gravimetric analysis (TGA) and differential thermal analysis (DTA). Hybrid heating yield a substantial reduction in sintering temperature and soaking time relative to the conventional resistive heating, and the samples achieved >99% density by microwave-resistive hybrid heating. Scanning electron micrograph (SEM) showed that the pellets are well sintered. The pellet sintered by hybrid heating showed a better transmittance of ∼79% in the UV-Visible region and ∼82% in the mid IR region compared to pellet sintered by resistive heating which has ∼68% in the UV-Visible region and ∼66% in the mid IR region. The results confirm the effective use of nanocrystalline powders from modified combustion synthesis as starting material for the development of high quality IR transparent windows and domes. In addition the microwave hybrid sintering technique employed in the present study also contributes to the results of better transmittance characteristics in highly densified MgAl2O4 ceramic pellets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Infrared Physics & Technology - Volume 72, September 2015, Pages 153-159
نویسندگان
, , , , ,