کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1788120 | 1023459 | 2012 | 6 صفحه PDF | دانلود رایگان |

The first neutral beam injector (NBI-1) has been developed for the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak. The first long pulse ion source (LPIS-1) has been installed in the NBI-1 for an auxiliary heating and current drive of KSTAR plasmas. The performance of 300 s ion beam extraction in the LPIS-1 was investigated on the KSTAR NBI-1 system, prior to the neutral beam injection for long pulse operation. The ion source consists of a magnetic bucket plasma generator with multi-pole cusp fields and a set of prototype tetrode accelerators with circular-type apertures. The inner volume of the plasma generator and accelerator column in the LPIS-1 is approximately 123 L. The nominal operation requirements for the ion source (IS) were a 100 kV/50 A deuterium beam and a 300 s pulse length. The extraction of ion beams was initiated by the formation of arc plasmas in the LPIS-1, called an arc-beam extraction method. A stable ion beam extraction of the LPIS-1 was achieved with 80 kV/27 A and a beam perveance of 1.19 microperv for a 300 s pulse length. Beam power deposition along the NBI-1 has been measured using water-flow calorimetry (WFC), and the sum of the deposited power on the ion source and beamline components was about 93% of the drained acceleration power (Vacc
• Iacc). The beam power deposition was compared to the calculated results of the beam transport with re-ionization (BTR) code.
Journal: Current Applied Physics - Volume 12, Issue 4, July 2012, Pages 1217–1222