کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1806332 | 1025197 | 2015 | 12 صفحه PDF | دانلود رایگان |

The increasing size and number of data sets of large four dimensional (three spatial, one temporal) magnetic resonance (MR) cardiac images necessitates efficient segmentation algorithms. Analysis of phase-contrast MR images yields cardiac flow information which can be manipulated to produce accurate segmentations of the aorta. Phase contrast segmentation algorithms are proposed that use simple mean-based calculations and least mean squared curve fitting techniques. The initial segmentations are generated on a multi-threaded central processing unit (CPU) in 10 seconds or less, though the computational simplicity of the algorithms results in a loss of accuracy. A more complex graphics processing unit (GPU)-based algorithm fits flow data to Gaussian waveforms, and produces an initial segmentation in 0.5 seconds. Level sets are then applied to a magnitude image, where the initial conditions are given by the previous CPU and GPU algorithms. A comparison of results shows that the GPU algorithm appears to produce the most accurate segmentation.
Journal: Magnetic Resonance Imaging - Volume 33, Issue 1, January 2015, Pages 134–145