کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1807567 1025267 2008 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Transient and sustained BOLD responses to sustained visual stimulation
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک ماده چگال
پیش نمایش صفحه اول مقاله
Transient and sustained BOLD responses to sustained visual stimulation
چکیده انگلیسی

Examining the transients of the blood-oxygenation-level-dependent (BOLD) signal using functional magnetic resonance imaging is a tool to probe basic brain physiology. In addition to the so-called initial dip and poststimulus undershoot of the BOLD signal, occasionally, overshoot at the beginning and at the end of stimulation and stimulus onset and offset (‘phasic’) responses are observed. Hemifield visual stimulation was used in human subjects to study the latter transients. As expected, sustained (‘tonic’) stimulus-correlated contralateral activation in the visual cortex and LGN was observed. Interestingly, bilateral phasic responses were observed, which only partly overlapped with the tonic network and which would have been missed using a standard analysis. A biomechanical model of the BOLD signal (‘balloon model’) indicated that, in addition to phasic neuronal activity, vascular uncoupling can also give rise to phasic BOLD signals. Thus, additional physiological information (i.e., cerebral blood flow) and examination of spatial distribution of the activity might help to assess the BOLD signal transients correctly. In the current study, although vascular uncoupled responses cannot be ruled out as an explanation of the observed phasic BOLD network, the spatial distribution argues that sustained hemifield visual stimulation evokes both bilateral phasic and contralateral sustained neuronal responses. As a consequence, in rapid event-related experimental designs, both the phasic and tonic networks cannot be separated, possibly confounding the interpretation of BOLD signal data. Furthermore, a combination of phasic and tonic responses in the same region of interest might also mimic a BOLD response typically observed in adaptation experiments.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Magnetic Resonance Imaging - Volume 26, Issue 7, September 2008, Pages 863–869
نویسندگان
,