کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
181903 | 459412 | 2007 | 5 صفحه PDF | دانلود رایگان |

The optimization of interfacial charge transfer between the dye and the electrolyte is crucial to the design of dye-sensitized solar cells. In this paper, we address the combined use of an ionic liquid crystal electrolyte and amphiphilic ruthenium dyes in dye-sensitized solar cells. The solar cell with an amphiphilic ruthenium dye [Ru(H2dcbpy)(tdbpy)(NCS)2] (H2dcbpy = 4,4′-dicarboxy-2,2′-bipyridine, tdbpy = 4,4′-tridecyl-2,2′-bipyridine), exhibited a short-circuit photocurrent density of 9.1 mA/cm2, an open-circuit voltage of 665 mV and a fill factor of 0.58, corresponding to an overall conversion efficiency of 3.51%. We find that increasing dye alkyl chain length to octadecyl from tridecyl results in lower short-circuit photocurrent density and open-circuit voltage, and the suitable dyes for ionic liquid crystal electrolyte differed completely from those used in liquid and ionic liquid electrolyte cells.
Journal: Electrochemistry Communications - Volume 9, Issue 5, May 2007, Pages 1134–1138