کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1822075 | 1526301 | 2016 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Pulse shape discrimination properties of plastic scintillators incorporating a rationally designed highly soluble and polymerizable derivative of 9,10-diphenylanthracene
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
ابزار دقیق
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A highly soluble and polymerizable derivative of 9,10-diphenylanthracene was designed and synthesized specifically to be capable of achieving very high loadings (at least 50 wt.%) when copolymerized with a polyvinyltoluene (PVT) matrix. The resulting heavily crosslinked plastics are mechanically hard and robust, and were found to have exceptional clarity with no sign of dye precipitation. Samples of these plastics both with and without added wavelength shifter were characterized for light yield, scintillation decay, and pulse shape discrimination (PSD) performance for α/γ discrimination, and the results were compared to that of a commercially available PSD plastic, EJ-299-34. The best performing formulation, with a primary dye loading of 50 wt.%, had a measured light yield of 9950 photons/MeV, and achieved a PSD figure-of-merit (FOM) of 1.05, the latter indicating that while the present material is not suited for practical applications, the overall approach demonstrates a proof-of-concept of PSD in highly loaded plastics stabilized through copolymerization of the primary dye, and suggests that further improvements through better dye choice/design may yet be achievable.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment - Volume 825, 21 July 2016, Pages 40-50
Journal: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment - Volume 825, 21 July 2016, Pages 40-50
نویسندگان
Tibor Jacob Hajagos, David Kishpaugh, Qibing Pei,