کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1822307 | 1526353 | 2015 | 7 صفحه PDF | دانلود رایگان |

A grid pulser for a thermionic-cathode electron gun for an L-band electron linac with an RF frequency of 1.3 GHz was developed in an effort to increase the power of a terahertz (THz) free-electron laser (FEL) based on the linac. The grid pulser can generate a train of electron pulses with a 5-ns duration at intervals of 36.9 ns or at a repetition frequency of 27 MHz, which is the 48th sub-harmonic of the RF frequency, and with a peak current of up to 2.4 A or higher, which is four times higher than the current that can be obtained with the conventional grid pulser. In combination with the sub-harmonic buncher (SHB) system, whose fundamental frequency is 108 MHz (the 12th sub-harmonic of the RF frequency), an electron beam that comprises electron bunches separated by 36.9-ns intervals for a period of 8 μs can be successfully accelerated using the linac to an energy of 15 MeV under the condition that the average beam current or, correspondingly, the beam loading in the acceleration tube of the linac is the same as that obtained using the conventional grid pulser. The time-resolved energy spectrum indicates that the energy is constant over the latter 6 μs and that the energy spread is 1.2% (FWHM); this performance satisfies the requirements for the FEL. The bunch charge measured at the end of the FEL beamline is 4 nC, which is four times higher than that obtained using the conventional grid pulser.
Journal: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment - Volume 773, 11 February 2015, Pages 97–103