کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1823600 1526439 2012 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Feynman variance-to-mean in the context of passive neutron coincidence counting
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم ابزار دقیق
پیش نمایش صفحه اول مقاله
Feynman variance-to-mean in the context of passive neutron coincidence counting
چکیده انگلیسی

Passive Neutron Coincidence Counting (PNCC) based on shift register autocorrelation time analysis of the detected neutron pulse train is an important Nondestructive Assay (NDA) method. It is used extensively in the quantification of plutonium and other spontaneously fissile materials for purposes of nuclear materials accountancy. In addition to the totals count rate, which is also referred to as the singles, gross or trigger rate, a quantity known as the reals coincidence rate, also called the pairs or doubles, is obtained from the difference between the measured neutron multiplicities in two measurement gates triggered by the incoming events on the pulse train. The reals rate is a measure of the number of time correlated pairs present on the pulse train and this can be related to the fission rates (and hence material mass) since fissions emit neutrons in bursts which are also detected in characteristic clusters.A closely related measurement objective is the determination of the reactivity of systems as they approach criticality. In this field an alternative autocorrelation signature is popular, the so called Feynman variance-to-mean technique which makes use of the multiplicity histogram formed the periodic, or clock-triggered opening of a coincidence gate.Workers in these two application areas share common challenges and improvement opportunities but are often separated by tradition, problem focus and technical language. The purpose of this paper is to recognize the close link between the Feynman variance-to-mean metric and traditional PNCC using shift register logic applied to correlated pulse trains. We, show using relationships for the late-gate (or accidentals) histogram recorded using a multiplicity shift register, how the Feynman Y-statistic, defined as the excess variance-to-mean ratio, can be expressed in terms of the singles and doubles rates familiar to the safeguards and waste assay communities. These two specialisms now have a direct bridge between them and we anticipate fruitful cross fertilization, for example on assay algorithms, including corrections for measurement item perturbation factors, and on data acquisition systems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment - Volume 686, 11 September 2012, Pages 136–144
نویسندگان
, , , , ,