کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1830730 1027483 2007 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Monte Carlo method for simulating γ-ray interaction with materials: A case study on Si
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم ابزار دقیق
پیش نمایش صفحه اول مقاله
Monte Carlo method for simulating γ-ray interaction with materials: A case study on Si
چکیده انگلیسی
In the present work, a Monte Carlo (MC) method has been developed to simulate various quantum mechanical processes for the energy loss of photons and fast electrons. The MC model is demonstrated by application to the interaction of photons with silicon over the energy range from 50 eV to 2 MeV and the subsequent electron cascades. The electron cascade process is commonly represented by two macroscopic parameters, the mean energy required to create an electron-hole pair, W, and the Fano factor, F, describing the electron yield and its variance. At energies lower than 5 keV, W generally decreases with increasing photon energy (from 3.96 to 3.58 eV), and it exhibits a sawtooth variation, as observed previously. However, discontinuities at the shell edges follow the photoionization cross-section, in contrast to previous results. The function, F(Ep), initially increases with increasing photon energy, Ep, to a maximum value of 0.187 around 155 eV, and then decreases at higher energies. Above the K shell edge, F has a value of 0.135. These results are consistent with experimental observations. The simulated distribution indicates that the interband transition and plasmon excitation are the most important mechanisms of electron-hole pair creation, while core shell ionization appears to be significant only at high energies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment - Volume 579, Issue 1, 21 August 2007, Pages 292-296
نویسندگان
, , , , , , ,