کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1840199 1527713 2016 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dual representation for the generating functional of the Feynman path-integral
ترجمه فارسی عنوان
بازنمایی دوگانه برای عملکرد تولیدی مسیر انتگرال فاینمن
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
چکیده انگلیسی

The generating functional for scalar theories admits a representation which is dual with respect to the one introduced by Schwinger, interchanging the role of the free and interacting terms. It maps ∫V(δJ)∫V(δJ) and JΔJ   to δϕcΔδϕcδϕcΔδϕc and ∫V(ϕc)∫V(ϕc), respectively, with ϕc=∫JΔϕc=∫JΔ and Δ the Feynman propagator. Comparing the Schwinger representation with its dual version one gets a little known relation that we prove to be a particular case of a more general operatorial relation. We then derive a new representation of the generating functional T[ϕc]=W[J]T[ϕc]=W[J] expressed in terms of covariant derivatives acting on 1T[ϕc]=NN0exp⁡(−U0[ϕc])exp⁡(−∫V(Dϕc−))⋅1 where Dϕ±(x)=∓Δδδϕ(x)+ϕ(x). The dual representation, which is deeply related to the Hermite polynomials, is the key to express the generating functional associated to a sum of potentials in terms of factorized generating functionals. This is applied to renormalization, leading to a factorization of the counterterms of the interaction. We investigate the structure of the functional generator for normal ordered potentials and derive an infinite set of relations in the case of the potential λn!:ϕn: . Such relations are explicitly derived by using the Faà di Bruno formula. This also yields the explicit expression of the generating functional of connected Green's functions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 910, September 2016, Pages 309–335
نویسندگان
,