کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1842812 1527714 2016 41 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The analytic renormalization group
ترجمه فارسی عنوان
گروه تحلیلی باز به هنجارسازی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
چکیده انگلیسی

Finite temperature Euclidean two-point functions in quantum mechanics or quantum field theory are characterized by a discrete set of Fourier coefficients GkGk, k∈Zk∈Z, associated with the Matsubara frequencies νk=2πk/βνk=2πk/β. We show that analyticity implies that the coefficients GkGk must satisfy an infinite number of model-independent linear equations that we write down explicitly. In particular, we construct “Analytic Renormalization Group” linear maps AμAμ which, for any choice of cut-off μ  , allow to express the low energy Fourier coefficients for |νk|<μ|νk|<μ (with the possible exception of the zero mode G0G0), together with the real-time correlators and spectral functions, in terms of the high energy Fourier coefficients for |νk|≥μ|νk|≥μ. Operating a simple numerical algorithm, we show that the exact universal linear constraints on GkGk can be used to systematically improve any random approximate data set obtained, for example, from Monte-Carlo simulations. Our results are illustrated on several explicit examples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 909, August 2016, Pages 880–920
نویسندگان
,