کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1842829 1527716 2016 47 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A note on generalized hypergeometric functions, KZ solutions, and gluon amplitudes
ترجمه فارسی عنوان
یک یادداشت در مورد توابع فوق هندسی عمومی، راه حل های KZ و دامنه های گلوئون
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
چکیده انگلیسی

Some aspects of Aomoto's generalized hypergeometric functions on Grassmannian spaces Gr(k+1,n+1)Gr(k+1,n+1) are reviewed. Particularly, their integral representations in terms of twisted homology and cohomology are clarified with an example of the Gr(2,4)Gr(2,4) case which corresponds to Gauss' hypergeometric functions. The cases of Gr(2,n+1)Gr(2,n+1) in general lead to (n+1)(n+1)-point solutions of the Knizhnik–Zamolodchikov (KZ) equation. We further analyze the Schechtman–Varchenko integral representations of the KZ solutions in relation to the Gr(k+1,n+1)Gr(k+1,n+1) cases. We show that holonomy operators of the so-called KZ connections can be interpreted as hypergeometric-type integrals. This result leads to an improved description of a recently proposed holonomy formalism for gluon amplitudes. We also present a (co)homology interpretation of Grassmannian formulations for scattering amplitudes in N=4N=4 super Yang–Mills theory.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 907, June 2016, Pages 107–153
نویسندگان
,