کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1842856 1527716 2016 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
S-functions, spectral functions of hyperbolic geometry, and vertex operators with applications to structure for Weyl and orthogonal group invariants
ترجمه فارسی عنوان
توابع S، توابع طیفی هندسه هیپربولیک و اپراتورهای رأس با برنامه های کاربردی برای ساختار برای Weyl و نامتغیرهای گروه متعامد
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
چکیده انگلیسی

In this paper we analyze the quantum homological invariants (the Poincaré polynomials of the slNslN link homology). In the case when the dimensions of homologies of appropriate topological spaces are precisely known, the procedure of the calculation of the Kovanov–Rozansky type homology, based on the Euler–Poincaré formula can be appreciably simplified. We express the formal character of the irreducible tensor representation of the classical groups in terms of the symmetric and spectral functions of hyperbolic geometry. On the basis of Labastida–Mariño–Ooguri–Vafa conjecture, we derive a representation of the Chern–Simons partition function in the form of an infinite product in terms of the Ruelle spectral functions (the cases of a knot, unknot, and links have been considered). We also derive an infinite-product formula for the orthogonal Chern–Simons partition functions and analyze the singularities and the symmetry properties of the infinite-product structures.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 907, June 2016, Pages 258–285
نویسندگان
, ,