کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1851057 | 1528820 | 2014 | 6 صفحه PDF | دانلود رایگان |

The νg9/2,d5/2,s1/2νg9/2,d5/2,s1/2 orbitals are assumed to be responsible for the swift onset of collectivity observed in the region below 68Ni. Especially the single-particle energies and strengths of these orbitals are of importance. We studied such properties in the nearby 67Ni nucleus, by performing a (d,p)(d,p)-experiment in inverse kinematics employing a post-accelerated radioactive ion beam (RIB) at the REX-ISOLDE facility. The experiment was performed at an energy of 2.95 MeV/u using a combination of the T-REX particle detectors, the Miniball γ-detection array and a newly-developed delayed-correlation technique as to investigate μs-isomers. Angular distributions of the ground state and multiple excited states in 67Ni were obtained and compared with DWBA cross-section calculations, leading to the identification of positive-parity states with substantial νg9/2νg9/2 (1007 keV) and νd5/2νd5/2 (2207 keV and 3277 keV) single-particle strengths up to an excitation energy of 5.8 MeV. 50% of the νd5/2νd5/2 single-particle strength relative to the νg9/2νg9/2-orbital is concentrated in and shared between the first two observed 5/2+5/2+ levels. A comparison with extended Shell Model calculations and equivalent (3He, d) studies in the region around 9040Zr50 highlights similarities for the strength of the negative-parity pf and positive-parity g9/2g9/2 state, but differences are observed for the d5/2d5/2 single-particle strength.
Journal: Physics Letters B - Volume 736, 7 September 2014, Pages 533–538