کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1856117 1529865 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Superintegrable systems on spaces of constant curvature
ترجمه فارسی عنوان
سیستم های فوق العاده انعطاف پذیر در فضاهای انحنای ثابت
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
چکیده انگلیسی


• Classifying 2D superintegrable, separable (polar coordinates) systems on S2, R2, H2.
• Construction of radial, angular potentials leading to superintegrability.
• Generalization of Bertrand’s theorem covering known models, e.g. Higgs, TTW, PW, and Coulomb.

Construction and classification of two-dimensional (2D) superintegrable systems (i.e. systems admitting, in addition to two global integrals of motion guaranteeing the Liouville integrability, the third global and independent one) defined on 2D spaces of constant curvature and separable in the so-called geodesic polar coordinates are presented. The method proposed is applicable to any value of curvature including the case of Euclidean plane, sphere and hyperbolic plane. The main result is a generalization of Bertrand’s theorem on 2D spaces of constant curvature and covers most of the known separable and superintegrable models on such spaces (in particular, the so-called Tremblay–Turbiner–Winternitz (TTW) and Post–Winternitz (PW) models which have recently attracted some interest).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Physics - Volume 346, July 2014, Pages 91–102
نویسندگان
, ,