کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1856141 | 1529867 | 2014 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Analytical solutions for quantum walks on 1D chain with different shift operators
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we study the discrete-time quantum walks on 1D Chain with the moving and swapping shift operators. We derive analytical solutions for the eigenvalues and eigenstates of the evolution operator UË using the Chebyshev polynomial technique, and calculate the long-time averaged probabilities for the two different shift operators respectively. It is found that the probability distributions for the moving and swapping shift operators display completely different characteristics. For the moving shift operator, the probability distribution exhibits high symmetry where the probabilities at mirror positions are equal. The probabilities are inversely proportional to the system size N and approach to zero as Nââ. On the contrary, for the swapping shift operator, the probability distribution is not symmetric, the probability distribution approaches to a power-law stationary distribution as Nââ under certain coin parameter condition. We show that such power-law stationary distribution is determined by the eigenstates of the eigenvalues ±1 and calculate the intrinsic probability for different starting positions. Our findings suggest that the eigenstates corresponding to eigenvalues ±1 play an important role for the swapping shift operator.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Physics - Volume 344, May 2014, Pages 194-212
Journal: Annals of Physics - Volume 344, May 2014, Pages 194-212
نویسندگان
Xin-Ping Xu, Xiao-Kun Zhang, Yusuke Ide, Norio Konno,