کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1858905 1037176 2016 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Triggering wave-domain heat conduction in graphene
ترجمه فارسی عنوان
هدایت حرارتی موج در گرافن
کلمات کلیدی
هدایت حرارت غیر فوریه، گرافن، موج مکانیکی، شبیه سازی دینامیک مولکولی
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
چکیده انگلیسی


• Mechanical wave can be triggered by high heat fluxes in strained graphene.
• The mechanical wave provides an additional channel of heat transport.
• The energy transported by the wave increases with the increasing heat flux.
• The wave is a dissipative structure but not artifacts of velocity-exchange method.

Using non-equilibrium molecular dynamics simulations, we systematically investigate the non-Fourier heat conduction in graphene under steady high heat flux. The results show that if two triggering factors, i.e. steady high heat flux and tensile stress, are satisfied simultaneously, a low-frequency mechanical wave and corresponding wave-like energy profile can be observed, which are distinctly different from ripples and linear temperature profile of the normal Fourier heat conduction. This mechanical wave provides an additional channel of heat transport and renders graphene more conductive without changing its pristine thermal conductivity. What's more, as the heat flux or original bond length increases, its frequency increases and energy transported by this mechanical wave is also on the rise. Further analyses show that such anomalous phenomenon is not arising from the high-energy or high-frequency pulses and also not artifacts of the velocity-exchange method. It is a dissipative structure, a new order state far from thermodynamic equilibrium, and the corresponding nonlinear relationship between the gradient of the wave-like kinetic temperature and the heat flux enables more efficient heat transport in graphene.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Letters A - Volume 380, Issue 24, 27 May 2016, Pages 2105–2110
نویسندگان
, ,