کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1859073 1530574 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Derivation of the Camassa–Holm equations for elastic waves
ترجمه فارسی عنوان
مشتق معادلات هالم کاماسائو برای امواج الاستیک
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
چکیده انگلیسی


• The propagation of long waves in a nonlocally and nonlinearly elastic medium is investigated.
• A double asymptotic expansion in two parameters is used.
• The Camassa–Holm equation is derived for elastic waves.
• A new fractional-type Camassa–Holm equation is reported.

In this paper we provide a formal derivation of both the Camassa–Holm equation and the fractional Camassa–Holm equation for the propagation of small-but-finite amplitude long waves in a nonlocally and nonlinearly elastic medium. We first show that the equation of motion for the nonlocally and nonlinearly elastic medium reduces to the improved Boussinesq equation for a particular choice of the kernel function appearing in the integral-type constitutive relation. We then derive the Camassa–Holm equation from the improved Boussinesq equation using an asymptotic expansion valid as nonlinearity and dispersion parameters that tend to zero independently. Our approach follows mainly the standard techniques used widely in the literature to derive the Camassa–Holm equation for shallow-water waves. The case where the Fourier transform of the kernel function has fractional powers is also considered and the fractional Camassa–Holm equation is derived using the asymptotic expansion technique.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Letters A - Volume 379, Issues 12–13, 5 June 2015, Pages 956–961
نویسندگان
, , ,