کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1865530 1530618 2010 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the group velocity for the shallow water equations with source terms
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله
On the group velocity for the shallow water equations with source terms
چکیده انگلیسی

The group velocity of the shallow water according to Saint-Venant's equations with source terms is analyzed. For these equations the classical group velocity relation describes the propagation velocity of a wave packet in normal dispersion e.g. in homogeneous form. The presence of source terms in momentum equation, such as the bottom slope and the friction of bed, gives rise to a singularity in the dispersion relation, causing an anomalous dispersion in which the standard group velocity becomes infinite. This non-physical result reveals that, for non-homogeneous shallow water equations, the classic relation is not appropriate for describing a wave packet. In order to overcome this difficulty we consider an asymptotic approximation, based on the Taylor series expansion, for the representation of the propagation velocity of a wave packet. The analysis includes the effects of the friction resistance term, Courant number and Froude number. Numerical results are discussed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Letters A - Volume 374, Issues 19–20, 19 April 2010, Pages 1909–1912
نویسندگان
,