کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1888534 1533646 2015 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Chebyshev’s property of certain hyperelliptic integrals of the first kind
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
The Chebyshev’s property of certain hyperelliptic integrals of the first kind
چکیده انگلیسی

In this work, we study the Chebyshev’s property of the 3-dimensional vector space E=,E=, where Ji(h)=∫H=hxidxy and H(x,y)=12y2+V(x) is a hyperelliptic Hamiltonian of degree 7. Our main result asserts that in two specific cases, namely (a) V′(x)=x3(1−x)3V′(x)=x3(1−x)3 and (b) V′(x)=x5(x−1),V′(x)=x5(x−1),E is an extended complete Chebyshev space. To this end we use the criterion and the tools developed by Grau et al. in [6]. We pose also the conjecture that E   is also a Chebyshev space when V′(x)=x(x−1)5V′(x)=x(x−1)5. In this regard we give a partial result, Theorem 1.4, concerning the Chebyshev property of two subspaces of E. To prove it we use another criterion by Mañosas and Villadelprat [7] to study when a collection of Abelian integrals is Chebyshev with accuracy k.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 78, September 2015, Pages 162–175
نویسندگان
, ,