کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1888543 1533646 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analytic self-similar solutions of the Oberbeck–Boussinesq equations
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
Analytic self-similar solutions of the Oberbeck–Boussinesq equations
چکیده انگلیسی

In this article we will present pure two-dimensional analytic solutions for the coupled non-compressible Newtonian–Navier–Stokes — with Boussinesq approximation — and the heat conduction equation. The system was investigated from E.N. Lorenz half a century ago with Fourier series and pioneered the way to the paradigm of chaos. We present a novel analysis of the same system where the key idea is the two-dimensional generalization of the well-known self-similar Ansatz of Barenblatt which will be interpreted in a geometrical way. The results, the pressure, temperature and velocity fields are all analytic and can be expressed with the help of the error functions. The temperature field shows a strongly damped single periodic oscillation which can mimic the appearance of Rayleigh–Bénard convection cells. Finally, it is discussed how our result may be related to nonlinear or chaotic dynamical regimes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 78, September 2015, Pages 249–255
نویسندگان
, ,