کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1889408 1043762 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improved asymptotic stability analysis for uncertain delayed state neural networks
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
Improved asymptotic stability analysis for uncertain delayed state neural networks
چکیده انگلیسی
This paper presents a new linear matrix inequality (LMI) based approach to the stability analysis of artificial neural networks (ANN) subject to time-delay and polytope-bounded uncertainties in the parameters. The main objective is to propose a less conservative condition to the stability analysis using the Gu's discretized Lyapunov-Krasovskii functional theory and an alternative strategy to introduce slack matrices. Two computer simulations examples are performed to support the theoretical predictions. Particularly, in the first example, the Hopf bifurcation theory is used to verify the stability of the system when the origin falls into instability. The second example is presented to illustrate how the proposed approach can provide better stability performance when compared to other ones in the literature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 39, Issue 1, 15 January 2009, Pages 240-247
نویسندگان
, , ,