کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1889430 1043762 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Topological entropy of continuous functions on topological spaces
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
Topological entropy of continuous functions on topological spaces
چکیده انگلیسی

Adler, Konheim and McAndrew introduced the concept of topological entropy of a continuous mapping for compact dynamical systems. Bowen generalized the concept to non-compact metric spaces, but Walters indicated that Bowen’s entropy is metric-dependent. We propose a new definition of topological entropy for continuous mappings on arbitrary topological spaces (compactness, metrizability, even axioms of separation not necessarily required), investigate fundamental properties of the new entropy, and compare the new entropy with the existing ones. The defined entropy generates that of Adler, Konheim and McAndrew and is metric-independent for metrizable spaces. Yet, it holds various basic properties of Adler, Konheim and McAndrew’s entropy, e.g., the entropy of a subsystem is bounded by that of the original system, topologically conjugated systems have a same entropy, the entropy of the induced hyperspace system is larger than or equal to that of the original system, and in particular this new entropy coincides with Adler, Konheim and McAndrew’s entropy for compact systems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 39, Issue 1, 15 January 2009, Pages 417–427
نویسندگان
, , ,