کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1889619 1043778 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimizing Markovian modeling of chaotic systems with recurrent neural networks
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
Optimizing Markovian modeling of chaotic systems with recurrent neural networks
چکیده انگلیسی
In this paper, we propose a methodology for optimizing the modeling of an one-dimensional chaotic time series with a Markov Chain. The model is extracted from a recurrent neural network trained for the attractor reconstructed from the data set. Each state of the obtained Markov Chain is a region of the reconstructed state space where the dynamics is approximated by a specific piecewise linear map, obtained from the network. The Markov Chain represents the dynamics of the time series in its statistical essence. An application to a time series resulted from Lorenz system is included.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 37, Issue 5, September 2008, Pages 1317-1327
نویسندگان
, , ,