کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1890177 1043807 2007 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Statistics of the two self-avoiding random walks on the three-dimensional fractal lattices
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
Statistics of the two self-avoiding random walks on the three-dimensional fractal lattices
چکیده انگلیسی
We present results of the effects of interpenetration of two interacting self-avoiding walks that take place in a member of a three-dimensional Sierpinski Gasket (SG) fractal family. We focus our attention on finding number of point contacts between the two SAW paths, which turns out to be a set of power laws whose characteristics depend predominantly on the given interactions between SAW steps. To establish statistics of the defining model, we apply an exact Renormalization Group Method for the few members (b=2,3and4) of the SG fractal family, as well as a Monte Carlo RG method for 2⩽b⩽25. The phase diagrams have been established and relevant values of the contact critical exponents, associated with the two-path mutual contacts, are determined.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 33, Issue 4, August 2007, Pages 1157-1167
نویسندگان
, , ,