کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1890230 1043809 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analysis of the solutions of coupled nonlinear fractional reaction–diffusion equations
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
Analysis of the solutions of coupled nonlinear fractional reaction–diffusion equations
چکیده انگلیسی

This paper is concerned with analysis of coupled fractional reaction–diffusion equations. As an example, the reaction–diffusion model with cubic nonlinearity and Brusselator model are considered. It is shown that by combining the fractional derivatives index with the ratio of characteristic times, it is possible to find the marginal value of the index where the oscillatory instability arises. Computer simulation and analytical methods are used to analyze possible solutions for a linearized system. A computer simulation of the corresponding nonlinear fractional ordinary differential equations is presented. It is shown that an increase of the fractional derivative index leads to periodic solutions which become stochastic as the index approaches the value of 2. It is established by computer simulation that there exists a set of stable spatio-temporal structures of the one-dimensional system under the Neumann and periodic boundary condition. The characteristic features of these solutions consist in the transformation of the steady state dissipative structures to homogeneous oscillations or spatio-temporal structures at certain values of the fractional index.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 41, Issue 3, 15 August 2009, Pages 1095–1104
نویسندگان
, , , ,