کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1890295 | 1043813 | 2007 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Topological entropy and chaos for maps induced on hyperspaces
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
If f is a continuous selfmap of a compact metric space X then by the induced map we mean the map f¯ defined on the space of all nonempty closed subsets of X by f¯(K)=f(K).The paper mainly deals with the topological entropy of induced maps. We show that under some nonrecurrence assumption the induced map f¯ is always topologically chaotic, that is, it has positive topological entropy.Additionally we characterize topological weak and strong mixing of f in terms of the omega limit set of induced map. This allows the description of the dynamics of the map f˜ induced by a transitive graph map f on the space of all subcontinua of a given graph G . It follows that in this case f˜ has the same topological entropy as f.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 33, Issue 1, July 2007, Pages 76–86
Journal: Chaos, Solitons & Fractals - Volume 33, Issue 1, July 2007, Pages 76–86
نویسندگان
Dominik Kwietniak, Piotr Oprocha,