کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1890561 1043825 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Global output convergence of Cohen–Grossberg neural networks with both time-varying and distributed delays
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
Global output convergence of Cohen–Grossberg neural networks with both time-varying and distributed delays
چکیده انگلیسی

This paper considers the global output convergence of Cohen–Grossberg neural networks with both time-varying and distributed delays. The inputs of the neural networks are required to be time-varying and the activation functions should be globally Lipschitz continuous and monotonely nondecreasing. Based on M-matrix theory, several sufficient conditions are established to guarantee the global output convergence of this class of neural networks. Symmetry in the connection weight matrices and the boundedness of the activation functions are abandoned in this paper. The convergence results are useful in solving some optimization problems and the design of Cohen–Grossberg neural networks with both time-varying and distributed delays. Two examples are given to illustrate the effectiveness of our results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 40, Issue 1, 15 April 2009, Pages 344–354
نویسندگان
, , ,