کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1890886 1043846 2007 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Exponential stability in Hopfield-type neural networks with impulses
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
Exponential stability in Hopfield-type neural networks with impulses
چکیده انگلیسی

This paper demonstrates that there is an exponentially stable unique equilibrium state in a Hopfield-type neural network that is subject to quite large impulses that are not too frequent. The activation functions are assumed to be globally Lipschitz continuous and unbounded. The analysis exploits an homeomorphic mapping and an appropriate Lyapunov function, and also either a geometric–arithmetic mean inequality or a Young inequality, to derive a family of easily verifiable sufficient conditions for convergence to the unique globally stable equilibrium state. These sufficiency conditions, in the norm ∥·∥p where p ⩾ 1, include those governing the network parameters and the impulse magnitude and frequency.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 32, Issue 2, April 2007, Pages 456–467
نویسندگان
,