کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1890903 | 1043846 | 2007 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Individual chaos implies collective chaos for weakly mixing discrete dynamical systems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let X be a metric space, (X, f) a discrete dynamical system, where f : X → X is a continuous function. Let f¯ denote the natural extension of f to the space of all non-empty compact subsets of X endowed with Hausdorff metric induced by d. In this paper we investigate some dynamical properties of f and f¯. It is proved that f is weakly mixing (mixing) if and only if f¯ is weakly mixing (mixing, respectively). From this, we deduce that weak-mixing of f implies transitivity of f¯, further, if f is mixing or weakly mixing, then chaoticity of f (individual chaos) implies chaoticity of f¯ (collective chaos) and if X is a closed interval then f¯ is chaotic (in the sense of Devaney) if and only if f is weakly mixing.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 32, Issue 2, April 2007, Pages 604–608
Journal: Chaos, Solitons & Fractals - Volume 32, Issue 2, April 2007, Pages 604–608
نویسندگان
Gongfu Liao, Xianfeng Ma, Lidong Wang,