کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1890903 1043846 2007 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Individual chaos implies collective chaos for weakly mixing discrete dynamical systems
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
Individual chaos implies collective chaos for weakly mixing discrete dynamical systems
چکیده انگلیسی

Let X be a metric space, (X, f) a discrete dynamical system, where f : X → X   is a continuous function. Let f¯ denote the natural extension of f to the space of all non-empty compact subsets of X endowed with Hausdorff metric induced by d. In this paper we investigate some dynamical properties of f   and f¯. It is proved that f   is weakly mixing (mixing) if and only if f¯ is weakly mixing (mixing, respectively). From this, we deduce that weak-mixing of f   implies transitivity of f¯, further, if f is mixing or weakly mixing, then chaoticity of f   (individual chaos) implies chaoticity of f¯ (collective chaos) and if X   is a closed interval then f¯ is chaotic (in the sense of Devaney) if and only if f is weakly mixing.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 32, Issue 2, April 2007, Pages 604–608
نویسندگان
, , ,