کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1891687 | 1533675 | 2013 | 7 صفحه PDF | دانلود رایگان |

This paper studies eigenvalues of some Steklov problems. Among other things, we show the following sharp estimates. Let Ω be a bounded smooth domain in an n(⩾2)-dimensional Hadamard manifold an let 0 = λ0 < λ1 ⩽ λ2 ⩽ … denote the eigenvalues of the Steklov problem: Δu = 0 in Ω and (∂u)/(∂ν) = λu on ∂Ω . Then ∑i=1nλi-1⩾(n2|Ω|)/(|∂Ω|) with equality holding if and only if Ω is isometric to an n-dimensional Euclidean ball. Let M be an n(⩾ 2)-dimensional compact connected Riemannian manifold with boundary and non-negative Ricci curvature. Assume that the mean curvature of ∂M is bounded below by a positive constant c and let q1 be the first eigenvalue of the Steklov problem: Δ2u = 0 in M and u = (∂2u)/(∂ν2) − q(∂ u)/(∂ν) = 0 on ∂M. Then q1 ⩾ c with equality holding if and only if M is isometric to a ball of radius 1/c in Rn.
Journal: Chaos, Solitons & Fractals - Volume 48, March 2013, Pages 61–67