کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1891986 1043940 2009 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The generalized Pell (p, i)-numbers and their Binet formulas, combinatorial representations, sums
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
The generalized Pell (p, i)-numbers and their Binet formulas, combinatorial representations, sums
چکیده انگلیسی

The theory of generalized Pell p-numbers was introduced by Stakhov and then have been studied by several authors. In this paper, we consider the usual Pell numbers and as similar to the Fibonacci p-numbers, we give fair generalization of the Pell numbers, which we call the generalized Pell (p, i)-numbers for 0 ⩽ i ⩽ p. First we give relationships between the generalized Pell (p, i)-numbers and give the generating matrices for these numbers. Also we derive the generalized Binet formulas, sums, combinatorial representations and generating function of the generalized Pell p-numbers. Also using matrix methods, we derive an explicit formula for the sums of the generalized Fibonacci p-numbers. Finally, we derive relationships between generalized Pell (p, i)-numbers and their sums and permanents of certain matrices.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 40, Issue 4, 30 May 2009, Pages 2047–2063
نویسندگان
,