کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1892014 1043944 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Global exponential stability and periodicity of reaction–diffusion recurrent neural networks with distributed delays and Dirichlet boundary conditions
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
Global exponential stability and periodicity of reaction–diffusion recurrent neural networks with distributed delays and Dirichlet boundary conditions
چکیده انگلیسی

In this paper, global exponential stability and periodicity of a class of reaction–diffusion recurrent neural networks with distributed delays and Dirichlet boundary conditions are studied by constructing suitable Lyapunov functionals and utilizing some inequality techniques. We first prove global exponential convergence to 0 of the difference between any two solutions of the original neural networks, the existence and uniqueness of equilibrium is the direct results of this procedure. This approach is different from the usually used one where the existence, uniqueness of equilibrium and stability are proved in two separate steps. Secondly, we prove periodicity. Sufficient conditions ensuring the existence, uniqueness, and global exponential stability of the equilibrium and periodic solution are given. These conditions are easy to verify and our results play an important role in the design and application of globally exponentially stable neural circuits and periodic oscillatory neural circuits.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 39, Issue 4, 28 February 2009, Pages 1538–1549
نویسندگان
, ,