کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1892123 1043949 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stability and Hopf bifurcation for a delayed cooperation diffusion system with Dirichlet boundary conditions
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
Stability and Hopf bifurcation for a delayed cooperation diffusion system with Dirichlet boundary conditions
چکیده انگلیسی
This paper is concerned with a delayed cooperation diffusion system with Dirichlet boundary conditions. By applying the implicit function theorem, the normal form theory and the center manifold reduction, the asymptotic stability of positive equilibrium and Hopf bifurcation are investigated. It is shown that an increase in delay will destabilize the positive equilibrium and lead to the occurrence of a supercritical Hopf bifurcation when the delay crosses through a sequence of critical values. Based on the normal form theory and the center manifold reduction for partial functional differential equations (PFDEs), we find that the bifurcating periodic solution occurring from the first Hopf bifurcation point is stable on the center manifold and those occurring from the other bifurcation points are unstable. Finally, some numerical simulations are given to illustrate our results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 38, Issue 1, October 2008, Pages 227-237
نویسندگان
, , ,