کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1892558 1043987 2006 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bifurcation and chaos in discrete-time predator–prey system
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
Bifurcation and chaos in discrete-time predator–prey system
چکیده انگلیسی

The discrete-time predator–prey system obtained by Euler method is investigated. The conditions of existence for flip bifurcation and Hopf bifurcation are derived by using center manifold theorem and bifurcation theory. And numerical simulation results not only show the consistence with the theoretical analysis but also display the new and interesting dynamical behaviors, including period-3, 5, 6, 7, 8, 9, 10, 12, 18, 20, 22, 30, 39-orbits in different chaotic regions, attracting invariant circle, period-doubling bifurcation from period-10 leading to chaos, inverse period-doubling bifurcation from period-5 leading to chaos, interior crisis and boundary crisis, intermittency mechanic, onset of chaos suddenly and sudden disappearance of the chaotic dynamics, attracting chaotic set, and non-attracting chaotic set. In particular, we observe that when the prey is in chaotic dynamic, the predator can tend to extinction or to a stable equilibrium. The computations of Lyapunov exponents confirm the dynamical behaviors. The analysis and results in this paper are interesting in mathematics and biology.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 27, Issue 1, January 2006, Pages 259–277
نویسندگان
, ,