کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1892772 | 1533751 | 2015 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the geometry of motions in one integrable problem of the rigid body dynamics
ترجمه فارسی عنوان
در هندسه حرکات در یک مسئله یکپارچه از دینامیک بدن سفت و محکم
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
چکیده انگلیسی
Due to Poinsot's theorem, the motion of a rigid body about a fixed point is represented as rolling without slipping of the moving hodograph of the angular velocity over the fixed one. If the moving hodograph is a closed curve, visualization of motion is obtained by the method of P.V. Kharlamov. For an arbitrary motion in an integrable problem with an axially symmetric force field the moving hodograph densely fills some two-dimensional surface and the fixed one fills a three-dimensional surface. In this paper, we consider the irreducible integrable case in which both hodographs are two-frequency curves. We obtain the equations of bearing surfaces, illustrate the main types of these surfaces. We propose a method of the so-called non-straight geometric interpretation representing the motion of a body as a superposition of two periodic motions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 87, January 2015, Pages 266-274
Journal: Journal of Geometry and Physics - Volume 87, January 2015, Pages 266-274
نویسندگان
I.I. Kharlamova, A.Y. Savushkin,