کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1893217 | 1044075 | 2009 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Relationship of d-dimensional continuous multi-scale wavelet shrinkage with integro-differential equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The goal of this paper is to extend the results of Didas and Weickert [Didas, S, Weickert, J. Integrodifferential equations for continuous multi-scale wavelet shrinkage. Inverse Prob Imag 2007;1:47-62.] to d-dimensional (d ⩾ 1) case. Firstly, we relate a d-dimensional continuous mother wavelet Ï(x) with a fast decay and n vanishing moments to the sum of the order partial derivative of a group of functions θk(x)(â£kâ£Â = n) with fast decay, which also makes wavelet transform equal to a sum of smoothed partial derivative operators. Moreover, d-dimensional continuous wavelet transform can be explained as a weighted average of pseudo-differential equations, too. For d = 1, our results are completely same as Didas and Weickert (2007), but for d > 1, it is different from the type of one variable. Finally, we exploit the reason with an example of 2-dimensional and 3-dimensional Mexican hat wavelet.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 40, Issue 3, 15 May 2009, Pages 1118-1126
Journal: Chaos, Solitons & Fractals - Volume 40, Issue 3, 15 May 2009, Pages 1118-1126
نویسندگان
Guojun Liu, Xiangchu Feng, Min Li,