کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1893230 1044075 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Global asymptotic stability of bistable traveling fronts in reaction-diffusion systems and their applications to biological models
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
Global asymptotic stability of bistable traveling fronts in reaction-diffusion systems and their applications to biological models
چکیده انگلیسی
This paper deals with the global asymptotic stability and uniqueness (up to translation) of bistable traveling fronts in a class of reaction-diffusion systems. The known results do not apply in solving these problems because the reaction terms do not satisfy the required monotone condition. To overcome the difficulty, a weak monotone condition is proposed for the reaction terms, which is called interval monotone condition. Under such a weak monotone condition, the existence and comparison theorem of solutions is first established for reaction-diffusion systems on R by appealing to the theory of abstract differential equations. The global asymptotic stability and uniqueness (up to translation) of bistable traveling fronts are then proved by the elementary super- and sub-solution comparison and squeezing methods for nonlinear evolution equations. Finally, these abstract results are applied to a two species competition-diffusion model and a system modeling man-environment-man epidemics.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 40, Issue 3, 15 May 2009, Pages 1229-1239
نویسندگان
, ,