کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1893313 | 1044080 | 2009 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hopf bifurcations, Lyapunov exponents and control of chaos for a class of centrifugal flywheel governor system
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, complex dynamical behavior of a class of centrifugal flywheel governor system is studied. These systems have a rich variety of nonlinear behavior, which are investigated here by numerically integrating the Lagrangian equations of motion. A tiny change in parameters can lead to an enormous difference in the long-term behavior of the system. Bubbles of periodic orbits may also occur within the bifurcation sequence. Hyperchaotic behavior is also observed in cases where two of the Lyapunov exponents are positive, one is zero, and one is negative. The routes to chaos are analyzed using Poincaré maps, which are found to be more complicated than those of nonlinear rotational machines. Periodic and chaotic motions can be clearly distinguished by all of the analytical tools applied here, namely Poincaré sections, bifurcation diagrams, Lyapunov exponents, and Lyapunov dimensions. This paper proposes a parametric open-plus-closed-loop approach to controlling chaos, which is capable of switching from chaotic motion to any desired periodic orbit. The theoretical work and numerical simulations of this paper can be extended to other systems. Finally, the results of this paper are of practical utility to designers of rotational machines.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 39, Issue 5, 15 March 2009, Pages 2150-2168
Journal: Chaos, Solitons & Fractals - Volume 39, Issue 5, 15 March 2009, Pages 2150-2168
نویسندگان
Jian-Gang Zhang, Xian-Feng Li, Yan-Dong Chu, Jian-Ning Yu, Ying-Xiang Chang,