کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1893473 1533763 2014 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Gauge networks in noncommutative geometry
ترجمه فارسی عنوان
شبکه های اندازه گیری در هندسه غیرقابل جابجایی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
چکیده انگلیسی

We introduce gauge networks as generalizations of spin networks and lattice gauge fields to almost-commutative manifolds. The configuration space of quiver representations (modulo equivalence) in the category of finite spectral triples is studied; gauge networks appear as an orthonormal basis in a corresponding Hilbert space. We give many examples of gauge networks, also beyond the well-known spin network examples. We find a Hamiltonian operator on this Hilbert space, inducing a time evolution on the C∗C∗-algebra of gauge network correspondences.Given a representation in the category of spectral triples of a quiver embedded in a spin manifold, we define a discretized Dirac operator on the quiver. We compute the spectral action of this Dirac operator on a four-dimensional lattice, and find that it reduces to the Wilson action for lattice gauge theories and a Higgs field lattice system. As such, in the continuum limit it reduces to the Yang–Mills–Higgs system. For the three-dimensional case, we relate the spectral action functional to the Kogut–Susskind Hamiltonian.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 75, January 2014, Pages 71–91
نویسندگان
, ,