کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1893543 1044092 2009 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Trilinearization and localized coherent structures and periodic solutions for the (2 + 1) dimensional K-dV and NNV equations
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
Trilinearization and localized coherent structures and periodic solutions for the (2 + 1) dimensional K-dV and NNV equations
چکیده انگلیسی

In this paper, using a novel approach involving the truncated Laurent expansion in the Painlevé analysis of the (2 + 1) dimensional K-dV equation, we have trilinearized the evolution equation and obtained rather general classes of solutions in terms of arbitrary functions. The highlight of this method is that it allows us to construct generalized periodic structures corresponding to different manifolds in terms of Jacobian elliptic functions, and the exponentially decaying dromions turn out to be special cases of these solutions. We have also constructed multi-elliptic function solutions and multi-dromions and analysed their interactions. The analysis is also extended to the case of generalized Nizhnik–Novikov–Veselov (NNV) equation, which is also trilinearized and general class of solutions obtained.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 39, Issue 2, 30 January 2009, Pages 942–955
نویسندگان
, , ,