کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1894028 | 1044133 | 2007 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Chaos, solitons and fractals in (2Â +Â 1)-dimensional KdV system derived from a periodic wave solution
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
With the help of an extended mapping method and a linear variable separation method, new types of variable separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) with two arbitrary functions for (2Â +Â 1)-dimensional Korteweg-de Vries system (KdV) are derived. Usually, in terms of solitary wave solutions and rational function solutions, one can find some important localized excitations. However, based on the derived periodic wave solution in this paper, we find that some novel and significant localized coherent excitations such as dromions, peakons, stochastic fractal patterns, regular fractal patterns, chaotic line soliton patterns as well as chaotic patterns exist in the KdV system as considering appropriate boundary conditions and/or initial qualifications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 34, Issue 5, December 2007, Pages 1575-1583
Journal: Chaos, Solitons & Fractals - Volume 34, Issue 5, December 2007, Pages 1575-1583
نویسندگان
Chun-Long Zheng, Gui-Ping Cai, Ji-Ye Qiang,