کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1894070 | 1044138 | 2007 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Delayed transitions in non-linear replicator networks: About ghosts and hypercycles
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we analyze delayed transition phenomena associated to extinction thresholds in a mean field model for hypercycles composed of three and four units, respectively. Hence, we extend a previous analysis carried out with the two-membered hypercycle [see Sardanyés J, Solé RV. Ghosts in the origins of life? Int J Bifurcation Chaos 2006;16(9), in press]. The models we analyze show that, after the tangent bifurcation, these hypercycles also leave a ghost in phase space. These ghosts, which actually conserve the dynamical properties of the coalesced coexistence fixed point, delay the flows before hypercycle extinction. In contrast with the two-component hypercycle, both ghosts show a plateau in the delay as Ï â 0, thus displacing the power-law dependence to higher values of Ï, in which the scaling law is now given by Ï â¼Â Ïβ, with β = â1/3 (where Ï is the delay and Ï = ϵ â ϵc, the parametric distance above the extinction bifurcation point). These results suggest that the presence of the ghost is a general property of hypercycles. Such ghosts actually cause a memory effect which might increase hypercycle survival chances in fluctuating environments.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 31, Issue 2, January 2007, Pages 305-315
Journal: Chaos, Solitons & Fractals - Volume 31, Issue 2, January 2007, Pages 305-315
نویسندگان
Josep Sardanyés, Ricard V. Solé,