کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1894330 1044163 2006 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Convergence of trajectories in fractal interpolation of stochastic processes
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
Convergence of trajectories in fractal interpolation of stochastic processes
چکیده انگلیسی

The notion of fractal interpolation functions (FIFs) can be applied to stochastic processes. Such construction is especially useful for the class of α-self-similar processes with stationary increments and for the class of α-fractional Brownian motions. For these classes, convergence of the Minkowski dimension of the graphs in fractal interpolation of the Hausdorff dimension of the graph of original process was studied in [Herburt I, Małysz R. On convergence of box dimensions of fractal interpolation stochastic processes. Demonstratio Math 2000;4:873–88. [11]], [Małysz R. A generalization of fractal interpolation stochastic processes to higher dimension. Fractals 2001;9:415–28. [15]], and [Herburt I. Box dimension of interpolations of self-similar processes with stationary increments. Probab Math Statist 2001;21:171–8. [10]].We prove that trajectories of fractal interpolation stochastic processes converge to the trajectory of the original process. We also show that convergence of the trajectories in fractal interpolation of stochastic processes is equivalent to the convergence of trajectories in linear interpolation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 27, Issue 5, March 2006, Pages 1328–1338
نویسندگان
,