کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1895497 | 1533739 | 2016 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hypersurfaces in space forms satisfying some curvature conditions
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In Abdalla and Dillen (2002) an example of a non-semisymmetric Ricci-symmetric quasi-Einstein austere hypersurface M isometrically immersed in an Euclidean space was constructed. In this paper we state that, at every point of the hypersurface M, the following generalized Einstein metric curvature condition is satisfied: (â) the difference tensor Râ
CâCâ
R and the Tachibana tensor Q(S,C) are linearly dependent. Precisely, (nâ2)(Râ
CâCâ
R)=Q(S,C) on M. We also prove that non-conformally flat and non-Einstein hypersurfaces with vanishing scalar curvature having at every point two distinct principal curvatures, as well as some hypersurfaces having at every point three distinct principal curvatures, satisfy (â). We present examples of hypersurfaces satisfying (â).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 99, January 2016, Pages 218-231
Journal: Journal of Geometry and Physics - Volume 99, January 2016, Pages 218-231
نویسندگان
Ryszard Deszcz, MaÅgorzata GÅogowska, Marian HotloÅ, Georges Zafindratafa,